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Summary. Within classes of isomeric benzenoid hydrocarbons various Kekulé- and Clar-structure-

based parameters (Kekulé structure count, Clar cover count, Herndon number, Zhang–Zhang poly-

nomial) are all mutually correlated. This explains why both the total �-electron energy (E), the Dewar

resonance energy (DRE), and the topological resonance energy (TRE) are well correlated with all these

parameters. Nevertheless, there exists an optimal value of the variable of the Zhang–Zhang polynomial

for which it yields the best results. This optimal value is negative-valued for E, around zero for TRE,

and positive-valued for DRE. A somewhat surprising result is that TRE and DRE considerably differ in

their dependence on Kekulé- and Clar-structure-based parameters.

Keywords. Kekulé structures; Clar theory; Zhang–Zhang polynomial; Total �-electron energy;

Resonance energy; Benzenoid hydrocarbons.

Introduction

In the theory of benzenoid hydrocarbons [1–5] Kekulé and Clar structural formulas
are often used for rationalizing the �-electron structure, and for predicting physical
properties and chemical behavior thereof. For quantitative purposes theKekulé struc-
ture count (K) is most frequently employed [2, 5, 6]. In Herndon’s structure-
resonance theory [2, 6–9] the most significant quantity is the number of pairs of
Kekulé structures that differ in positions of three double bonds; in what follows
we refer to it as to the Herndon number and denote it by H. The Herndon number
is equal to the number of edges of the so-called resonance graph [10–12]. An ex-
ample illustrating the numbers K and H as well as the resonance graph is given in
Fig. 1.
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In its original formulation [2], the Clar aromatic sextet theory was a non-
quantitative approach. Eventually, there were several attempts to overcome this
limitation [5, 13–15]. Especially far-reaching is the Hosoya-Yamaguchi concept of
generalized Clar formulas, whose number is, for the vast majority of benzenoids,
equal to the number of Kekulé structures. Each Clar formula has a maximum num-
ber of aromatic sextets and pertains to a single Kekulé structure. The generalized
Clar formulas (which may possess any number of aromatic sextets) may be com-
patible with several Kekulé structures. An illustrative example is given in Fig. 2.
There s1 and s2 are the ordinary Clar structures of benzoanthracene, because these
structures – in contrast to s3–s7 – possess a maximum number (in this case: 2)

Fig. 1. Benzoanthracene (B) has seven Kekulé structural formulas, k1; k2; . . . ; k7, and therefore

KðBÞ ¼ 7; eight pairs thereof differ in the position of exactly three double bonds; these pairs are

ðk1; k2Þ, ðk1; k3Þ, ðk2; k4Þ, ðk3; k4Þ, ðk3; k5Þ, ðk4; k6Þ, ðk5; k6Þ, and ðk6; k7Þ, and therefore the Herndon

number of benzoanthracene is HðBÞ ¼ 8; the edges of the resonance graph RðBÞ correspond to the

above specified pairs ofKekulé structures; therefore the number of edges of the resonance graph coincides

with the Herndon number
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aromatic sextets. In Clar theory [1], it is postulated that exactly these diagrams
(namely s1 and s2) reflect the main �-electron-based chemical and physical proper-
ties of the respective benzenoid molecule.

Fig. 2. Benzoanthracene (B) has two Clar aromatic sextet formulas (s1 and s2), each with two

aromatic sextets (symbolized by circles); it has a total of seven generalized Clar formulas,

s1; s2; . . . ; s7, of which s3, s4, s5, and s6 have a single aromatic sextet, whereas s7 has none; each

generalized Clar formula s corresponds to KðsÞ Kekulé structures, referred to as Clar covers; in

particular, Kðs1Þ ¼ 1, Kðs2Þ ¼ 1, Kðs3Þ ¼ 2, Kðs4Þ ¼ 2, Kðs5Þ ¼ 1, Kðs6Þ ¼ 3, Kðs7Þ ¼ 7, and thus

the Clar cover count of benzoanthracene is CCCðBÞ ¼ 1 þ 1 þ 2 þ 2 þ 1 þ 3 þ 7 ¼ 17; counting

the Clar covers with exactly k aromatic sextets, we get zðB; 2Þ ¼ 2, zðB; 1Þ ¼ 8, and zðB; 0Þ ¼ 7,

implying that the Zhang–Zhang polynomial is �ðB; xÞ ¼ 2 x2 þ 8 xþ 7; using the data given from

Fig. 1 one can check that zðB; 0Þ and zðB; 1Þ are equal to the Kekulé structure count and Herndon

number of B, respectively; both equalities are valid for all benzenoid systems
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The structures consisting of aromatic sextets and=or double bonds are called
Clar covers [16–18]. The Chinese mathematicians Heping Zhang and Fuji Zhang
defined the quantities zðB; kÞ, equal to the number of Clar covers of the benzenoid
system B, containing exactly k aromatic sextets, k ¼ 0; 1; 2; . . ., and conceived a
pertinent counting polynomial [16–18]

�ðxÞ ¼ �ðB; xÞ ¼ zðB; 0Þ þ zðB; 1Þ xþ zðB; 2Þ x2 þ � � � :

In what follows �ðxÞ will be referred to as the Zhang–Zhang polynomial. In Fig. 2
the definition of the Zhang–Zhang polynomial is explained in due detail on the
example of benzoanthracene.

The Zhang–Zhang polynomial can be viewed as a mathematical object that
includes and unifies the basic Kekulé- and Clar-structure-based parameters, en-
countered in the theory of benzenoid hydrocarbons. In particular, zðB; 0Þ ¼ KðBÞ
(i.e., �ðB; 0Þ ¼ KðBÞ) and zðB; 1Þ ¼ HðBÞ.

The main papers on the Zhang–Zhang polynomial were published in mathe-
matical journals [16–18]. As a consequence, chemical applications of �ðxÞ started
with a considerable delay [19, 20] (but one should mention the work [21], pub-
lished in a Chinese chemical journal). A review on the Zhang–Zhang polynomial,
aimed at organic chemists, has recently been prepared [22].

The total number of Clar covers will be referred to as the Clar cover count and
denoted by CCC. Clearly, CCC ¼ �ð1Þ. Our investigations [19] revealed that CCC
is a structure-descriptor that deserves particular attention, being related with the
topological resonance energy.

In this paper we report our studies of three quantum-chemical characteristics of
the energetics of benzenoid molecules, and their relation with the above mentioned
Kekulé- and Clar-structure-based parameters. We examined the total �-electron
energy E, as computed within the simple HMO approximation (for a recent review
see Ref. [23]), the Dewar resonance energy DRE [24], as computed by means of
the Hess-Schaad parametrization scheme (for a recent review see Ref. [25]), and
the topological resonance energy TRE [26, 27]. At this point it is worth recalling
that E is proportional also to the �-electron energy of benzenoid hydrocarbons
[28], and thus E is simply related with their (measurable) enthalpies and other
thermodynamic functions [28–30].

In earlier times the following main results along these lines were reported.

� Within classes of isomeric benzenoid molecules, E and K are linearly correlated
(the Hall rule) [2, 31, 32].

� Within classes of benzenoid molecules of various size, DRE and logK are
linearly correlated [33].

� TRE and DRE are linearly correlated [27]. In fact, in Ref. [27] a rather weak
linear correlation between TREPE (¼ TRE per �-electron) and DREPE (¼ DRE
per �-electron) was shown to exist, employing a sample consisting of conjugated
molecules of various size, both benzenoid and non-benzenoid, aromatic, non-
aromatic, and antiaromatic. Correlation between TRE and DRE within classes of
isomeric benzenoid molecules seems to have not been studied so far.

� Within classes of isomeric benzenoid molecules, TRE and log CCC are linearly
correlated [19].
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Because both E, DRE, and TRE, as well as K, H, CCC, and �ðxÞ depend on the
size (number of carbon atoms and number of carbon–carbon bonds) of the benze-
noid molecules examined, it is purposeful to restrict the considerations to classes of
benzenoid isomers. In what follows we present the results obtained for the set
consisting of 118 (¼ all possible) isomers of heptacyclic catacondensed benze-
noids, C30H18. Analogous results have been obtained for several other sets of both
cata- and pericondensed benzenoids; these may be obtained from the authors upon
request.

Within sets of benzenoid isomers, many linear or slightly curvilinear correla-
tions exist between the Kekulé- and Clar-structure-based parameters. In fact, all
such parameters mentioned above (K, H, CCC, and �ðxÞ for various values of the
variable x) occur to be mutually correlated. This, in turn, provides a rationale for
the observed linear dependence of E and TRE, and logarithmic dependence of
DRE on any of these parameters. Because these relations are not exact, but only
correlations, by means of a detailed analysis some (perhaps important) differ-
ences in the structure-dependence of E and the two resonance energies could be
envisaged.

In the subsequent section we describe the correlations between the quantities
investigated. In the next section we focus our attention to differences in the
structure-dependence of E, DRE, and TRE. In the last section we state some con-
cluding remarks. In the Appendix a mathematical relation between �ð0Þ ¼ K and
�ð1Þ ¼ CCC is deduced.

Results and Discussion

Correlations between Kekulé-Structure-Based, Clar-Structure-Based,
and Energetic Parameters of Benzenoid Molecules

As already mentioned, in the 1970s, when the two resonance energies DRE
and TRE were introduced (and when numerous papers were published on their
chemical applications and mathematical properties), their mutual relation attracted
very little attention [27]. In the decades that followed, this problem was not
considered at all. In particular, the question of how TRE and DRE are correlated
within sets of benzenoid isomers seems to be first time addressed only quite
recently [20].

In Fig. 3 are plotted the TRE-values of isomeric catacondensed heptacyclic-
benzenoid hydrocarbons versus the respective DRE-values. The linearity of this
correlation is something what one would expect, knowing that both the Dewar
[24, 25] and the topological resonance energy [26, 27] were aimed at quantify-
ing one and the same �-electron characteristics of polycyclic conjugated mole-
cules [34].

At the first glance, the slight curvilinearity of the correlation shown in Fig. 3
seems to be negligible. If so, then one would expect that the form of the depen-
dence of TRE and DRE on various structure-descriptors is identical. That this is not
the case is shown in Fig. 4.

Figure 4 reveals the very good linear correlation between E and K (previously
known [2, 31, 32]) and between TRE and K (hitherto not reported). In both cases
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Fig. 3. Correlation between TRE and DRE for the (complete) set of 118 isomeric heptacyclic

catacondensed benzenoid hydrocarbons C30H18; the correlation is linear; by a careful inspection a

slight curvilinearity can be observed; however, by means of F-test, this curvilinearity is found to be

statistically not significant at a 90% (or higher) confidence level

Fig. 4. Dependence of TRE, DRE, and E on the number of Kekulé structures (¼ �ð0Þ) for the same

data set as in Fig. 3; for technical reasons, the E-values are shifted downwards by 41 units. The

TRE=K and E=K correlations are linear; their curvilinearity is statistically not significant at 90%

(or higher) confidence level; the curvilinearity of the DRE=K correlation is statistically significant at

a confidence level greater than 99%
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the correlation coefficient is 0.993. The dependence of DRE on K is essentially
logarithmic, as anticipated in Ref. [33], and as shown in Fig. 5.

After establishing the way in which the total �-electron energy and the reso-
nance energies depend on the number of Kekulé structures, one may ask about
their dependence on other Kekulé- and Clar-structure-based parameters. The
answer to these questions is found by observing that (within sets of benzenoid
isomers) various Kekulé- and Clar-structure-based parameters are all mutually
correlated, and that these correlations are essentially linear. In Fig. 6 we show
how H and �ðxÞ are correlated with the Kekulé structure count K ¼ �ð0Þ. We see
that there is a linear correlation between K and the Herndon number (a feature
that also seems to be not recognized until now). In addition, for near-zero values
of the variable x, the correlations between �ð0Þ and �ðxÞ is also linear. A slight
deviation from linearity takes place only for larger values of x, in particular for
x � 1.

We thus arrive at the previously not fully recognized conclusion that the
main Kekulé- and Clar-structure-based parameters of benzenoid molecules carry
essentially one and the same structural information, same as what is provided
by the simple Kekulé structure count. This implies that if in quantitative theo-
retical considerations we use the Herndon number and=or the Zhang–Zhang poly-
nomial instead of (or together with) the Kekulé structure count, the gain will not
be great.

On the other hand, none of the above described relations is exact and the deviations
of the data points from the regression lines must not be disregarded. Therefore,

Fig. 5. Dependence of TRE, DRE, and E on the logarithm of the number of Kekulé structures

(¼ ln�ð0Þ) for the same data set as in Fig. 3; the TRE=ln K and E=ln K correlations are evidently

curvilinear, whereas the DRE=ln K correlation is linear (with correlation coefficient 0.996);

the curvilinearity of the latter correlation is not statistically significant at a confidence level 90% or

greater, provided the outlier – the data point pertaining to heptacene – is not taken into account
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there still may be some improvement if the Zhang–Zhang polynomial �ðxÞ is used
instead of K ¼ �ð0Þ. The results obtained along these lines are outlined in the sub-
sequent section.

Further Differences in the Structure-Dependence of the Energetic
Parameters of Benzenoid Molecules

In order to shed some more light on the role of the Clar-structure-based para-
meters, and in view of the results presented in the previous section, we have
examined how E and TRE are correlated with �ðxÞ, as well as DRE with ln�ðxÞ.
The variable x has been varied in order to find its value for which the approxima-
tions (Eqs. (1)–(3)) become optimal.

EðBÞ � a �ðB; xÞ þ b ð1Þ
TREðBÞ � a0 �ðB; xÞ þ b0 ð2Þ
DREðBÞ � a00 ln �ðB; xÞ þ b00 ð3Þ

For each value of x the coefficients a; b; a0; b0; a00; b00 were determined by least-
squares fitting, and the average relative error (ARE) was taken as the criterion of
the precision of the respective approximation. The results obtained for the C30H18

isomers are shown in Fig. 7.
Analogous results (that can be obtained from the authors upon request) have

been found for other classes of benzenoid isomers, but the values of x for which

Fig. 6. The dependence of the Herndon number (H) and the Zhang–Zhang polynomial �ðxÞ for various

values of the variable x on the Kekulé structure count K ¼ �ð0Þ, for the C30H18 benzenoid isomers

specified in Fig. 3; all these correlations are essentially linear; the correlation coefficients are 0.9946

for H, 0.9986 for �ð0:2Þ, 0.9950 for �ð0:4Þ, 0.9899 for �ð0:6Þ, 0.9840 for �ð0:8Þ, and 0.9776 for �ð1:0Þ
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ARE becomes minimal were not the same. Anyway, the general regularity that
emerged is the following:

� Equation (1) is optimal for some negative-valued x; xoptimal2f�0:2; �0:1g. In
the case of the C30H18 isomers, xoptimal ¼ �0:15 and AREmin ¼ 0:022%.

� Equation (2) is optimal for some near-zero x; jxoptimalj� 0:03. In the case of the
C30H18 isomers, xoptimal ¼ 0:01 and AREmin ¼ 0:55%.

� Equation (3) is optimal for some positive-valued x; xoptimal2f0:1; 0:2g. In the
case of the C30H18 isomers, xoptimal ¼ 0:19 and AREmin ¼ 0:41%.

We mention in passing that in Refs. [19, 20] also the approximation (4) was examined
(for which xoptimal � 0:7).

TREðBÞ � a� ln �ðB; xÞ þ b� ð4Þ
As explained above, the dependence between TRE and �ð0Þ is not logarithmic.

Therefore we now realize that the usage of the expression occurring on the right-
hand side of Eq. (4) was not legitimate.

Concluding Remarks

Our studies revealed certain hitherto concealed properties of the resonance energies
of benzenoid molecules, and their dependence on Kekulé- and Clar-structure-based
parameters.

For a usually educated chemist, the meaning of our findings is that the two
resonance energies encountered in the chemical literature (DRE and TRE) differ

Fig. 7. Dependence of the average relative error (ARE) of Eqs. (1)–(3) on the variable x, computed

for the C30H18 benzenoid isomers specified in Fig. 3; the minima are attained for x ¼ �0:15,

x ¼ 0:01, and x ¼ þ0:19, respectively, and are equal to 0.022, 0.55, and 0.41%, respectively; in

order to present all the three curves on one diagram, the ARE values pertaining to Eqs. (1) and (3)

were multiplied by 25 and 1.3, respectively
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more than it previously was expected. Therefore, when ‘‘aromaticity’’ of conju-
gated molecules is rationalized and predicted by means of resonance energies
[25, 35], one should be careful which of them to apply.

For chemists familiar with the details of Kekulé- and Clar-structure-based the-
ories, we could say more:

First of all, in spite of the apparent linear correlation between the two resonance
energies (cf. Fig. 3), the topological resonance energy (TRE) is a linear function of
the Kekulé structure count K (cf. Fig. 4), whereas the analogous dependence of the
Dewar resonance energy (DRE) is logarithmic (cf. Fig. 5).

All Kekulé- and Clar-structure-based parameters investigated in this work
(Kekulé structure count, Herndon number, Clar cover count, and the Zhang–Zhang
polynomial for various values of the variable x) are mutually correlated, and these
correlations are essentially linear, cf. Fig. 6. Therefore, E, TRE, and DRE depend
on the mentioned parameters in the essentially same manner as on K.

By using the Zhang–Zhang polynomial instead of K, it is possible to somewhat
improve the precision of the approximations for E and DRE, Eqs. (1) and (3), but
not for TRE, Eq. (2). An interesting finding, that is not fully understood, is that in
the case of total �-electron energy, Eq. (1), the Zhang–Zhang polynomial with a
negative-valued variable xoptimal needs to be used, whereas in the case of the Dewar
resonance energy, Eq. (3), the corresponding xoptimal is positive-valued, cf. Fig. 7.
Equally interesting is the finding that for the topological resonance energy, Eq. (2),
xoptimal � 0. This means that TRE depends only on K (which is equal to the Zhang–
Zhang polynomial at x ¼ 0), and is thus insensitive to other structure-descriptors
originating from Herndon’s structure-resonance theory [2, 6–9] and=or from the
quantitative versions of Clar’s aromatic sextet theory [1, 13, 14, 16–19].

Appendix: Relations between z (0) and z (1)

As already explained, the Zhang–Zhang polynomial at x ¼ 0 and x ¼ 1 is equal to the Kekulé structure

count K and the Clar cover count CCC, respectively. We now show that �ð1Þ is bounded from both

below and above by linear functions of �ð0Þ.
Consider a benzenoid system B whose Clar formulas contain Cl ¼ ClðBÞ aromatic sextets; Cl is

called the Clar number of the respective benzenoid molecule [22]. (In the example shown in Fig. 2,

Cl ¼ 2.)

The Zhang–Zhang polynomial of B can be written as Eq. (5).

�ðB; xÞ ¼
XCl
k¼0

zðB; kÞ x k ð5Þ

The sextet polynomial of a benzenoid system B is defined as Eq. (6) [13] where sðB; kÞ is the

number of generalized Clar formulas of B with k aromatic sextets. (In the example shown in Fig. 2,

sðB; 0Þ ¼ 1, sðB; 1Þ ¼ 4, and sðB; 2Þ ¼ 2.) By definition, sðB; 0Þ ¼ 1 for all benzenoid systems. It is

known that Eqs. (7) [13] and (8) [18] are true.

�ðB; xÞ ¼
XCl
k¼0

sðB; kÞ x k ð6Þ

�ðB; 1Þ ¼
XCl
k¼0

sðB; kÞ ¼ KðBÞ ¼ �ð0Þ ð7Þ

�ðB; xÞ ¼ �ðB; xþ 1Þ ð8Þ
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Bearing these relations in mind, we have Eqs. (9) and (10).

�ðB; 1Þ ¼ �ðB; 2Þ

¼
XCl
k¼0

sðB; kÞ 2k ¼ sðB; 0Þ þ
XCl
k¼1

sðB; kÞ 2k

� sðB; 0Þ þ 2
XCl
k¼1

sðB; kÞ ¼ sðB; 0Þ þ 2

�XCl
k¼0

sðB; kÞ � sðB; 0Þ
�

ð9Þ

¼ 1 þ 2 ½KðBÞ � 1� ¼ 2 �ðB; 0Þ � 1

�ðB; 1Þ ¼ �ðB; 2Þ

¼
XCl
k¼0

sðB; kÞ 2k ¼ sðB; 0Þ þ
XCl
k¼1

sðB; kÞ 2k

�sðB; 0Þ þ 2Cl
XCl
k¼1

sðB; kÞ ¼ sðB; 0Þ þ 2Cl
�XCl

k¼0

sðB; kÞ � sðB; 0Þ
�

ð10Þ

¼ 1 þ 2Cl ½KðBÞ � 1� ¼ 2Cl �ðB; 0Þ � ½2Cl � 1�

Thus we arrived at the inequalities (Eq. (11)) or, what is the same Eq. (12).

2 �ðB; 0Þ � 1 � �ðB; 1Þ � 2ClðBÞ �ðB; 0Þ �
�
2ClðBÞ � 1

�
ð11Þ

2KðBÞ � 1 � CCCðBÞ � 2ClðBÞ KðBÞ �
�
2ClðBÞ � 1

�
ð12Þ

Equality on both sides is attained if and only if the Clar number is equal to unity, which happens if B is

a linear polyacene and only then.
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[32] Gutman I, Petrović S (1983) Chem Phys Lett 97: 292

[33] Swinborne-Sheldrake R, Herndon WC, Gutman I (1975) Tetrahedron Lett 755
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